Algebraic K-theory and Motivic Cohomology
نویسندگان
چکیده
منابع مشابه
K-theory and Motivic Cohomology of Schemes
We examine some of the basic properties satisfied by Bloch’s cycle complexes for quasi-projective varieties over a field, and extend some of them to the cycle complex of a scheme of finite type over a regular dimension one base. We also give an extension to the simplicial spectra in the niveau tower of the cosimplicial scheme ∆∗ X . As applications, we show that the AtiyahHirzebruch spectral se...
متن کاملWeight one motivic cohomology and K-theory
We study a filtration of the algebraic K-theory spectrum of a smooth variety whose “layers” ought to give the motivic cohomology groups. The central result is a computation of the weight one layer of the filtration. The computations show that the homotopy groups of the weight one piece coincides with the weight one motivic cohomology groups, thus providing evidence that the filtration is correc...
متن کاملLambda operations, K theory and motivic cohomology
This paper is in two parts: in part one, our main object is to give a construction of natural λ-operations for relative K-theory with supports, satisfying the special λ-ring identities. In the second part, we give an application to the relation of motivic cohomology and algebraic K-theory of a smooth quasi-projective variety over a field. The main idea in the construction of the λ-operations is...
متن کاملK-theory and Absolute Cohomology for Algebraic Stacks
In this paper we consider the K-theory of smooth algebraic stacks, establish λ and Adams operations and show that the higher K-theory of such stacks is always a pre-λ-ring and is a λ-ring if every coherent sheaf is the quotient of a vector bundle. As a consequence we are able to define Adams operations and absolute cohomology for smooth algebraic stacks satisfying this hypothesis. We also defin...
متن کاملCaterads and Motivic Cohomology
We define “weighted multiplicative presheaves” and observe that there are several weighted multiplicative presheaves that give rise to motivic cohomology. By neglect of structure, weighted multiplicative presheaves give symmetric monoids of presheaves. We conjecture that a suitable stabilization of one of the symmetric monoids of motivic cochain presheaves has an action of a caterad of presheav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oberwolfach Reports
سال: 2016
ISSN: 1660-8933
DOI: 10.4171/owr/2016/31